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ABSTRACT

In this report a regression-like eFtimator i~ inve~tigated ~s a ~ethod

to use LANDSAT riata to improve E5S ob)ective yield (OY) esti~ates for corn

Rnc soyheans. The estimator's pri~ary variahle, which is required to be

known only for samplec fields, is estimate~ field-level yield compute~

from o~served plot rata. The e~timator's auxiliary variahles are

field-level means of MSS radiometric v~lues and/or various MSS vegetative

incices. By definition, ·auxiliarv varia~les must ~e kn0WTI over the ent~re

population, which in tbis c~se is all land planted to the crop of interest

within S0we target area. Since a pixeJ's population me~hership is not

known for pixels exterior to June Enumerative Survey (JES) segments, the

set of all pixels classified to the crop of interest is used to define a

pseudo-population for the estimator. ~is creates an esti~ator bias which

is estimated from la~eled LA~TSAT data coinciding with JES segments.

~Evaluation of the developed estimator with 197e unitempora1 Iowa data

producen ~ixed results in su~-state analysis areas. In some areas of

Iowa, no yield estimation improvements fro~ LANDSAT were indicated. Tn

other parts of Iowa, yield estimation improvements were moderate for soy-

heans and marginal for corn. Haze correction was used to develop

entire-state estimators. Entire-state estimation improvements were modest

for hoth corn and soybeans. However, if LANDSAT data are available from

the acreage estimation program at no additional cost then some savings can

be realized In the OY program through reduced sample size.
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BACKGFOUND

Yield Data Collection
Annually from late May to early June, ESS conducts a nationwide agri-

cultural survey referred to a~ the June Enumerative Survey (JE8). This

svrvey co~sfsts of interviews with farm operators in randomly sampled

areas of land called segments. These interviews include a field hy field

enumeration of land use and acreage within segments. These segments are

selected ~y stratified random sampling from the population of all segments
in a given land area. The strata are land use categories determine~ by

visual interpretation of aerial photography or LANDSAT imagery and

delinfate~ on county highway maps. The segments are typically one square

mile in size depending on the availability of distinguishable boundaries.

For Iowa, the JES includes a sample of approximately ?OO segments.

Another type of survey con0ucted t-y ESS is tt-eOl->jectiveYiel~ Survey

(OYS). The OY5 ~egjns aroun~ the time of initial fruit development for

the major crops and is repeated at monthly intervals until harvest. The

purpose of tl->eOYS is to collect objective plant counts and measurements

to aid in making large-area yield forecasts an~ estimates with measurahle

precision. The OYS sample is selected hy systematic ran~om sampling of

individual acres from all JES acres identified as planted to the crop of

interest. The selected acres thus identify particular fields with selec-

tion probability proportional to size (PP8). Very large fields may be

selected more than once. (Strictly speaking, OYS fields are selected only

approximately PPS since very large fields are selected with probability 1,
which is not PPS.)
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An OYS-sample~ field (wit~ multiple selections of the same field being

considered as different sampled fields) is called an individual "sample"

~y the OYS operational program. The OYS sample size in Iowa in 1978 was

240 for corn and 170 for soybeans. Each sample consisted of two randomly

an~ i~~ependently selected plots. For corn, each plot was two rows in

width and 15 feet in length. The soybean plots were 2 rows in width and

3.5 feet in length.

The OYS is desi~ned to provide precise yield forecasts and estimates

(approximately 2% coefficient of variation) at the state level. Since

more variation in grain yield occurs between fields than within fields,

the most precise state level estimates are generally obtained by having a

large nuwrer of samples relative to plots within each sample. Hhile this

methor1 is well suited to large-area yield estimation, it does not provide

tre ~ata neces~ary to make good field-level estimates since each field

typically contains only two OYS plots. ~e OYS pre-harvest data consists

of ccunts, measure~ents, and weig~ts for plants within OYS plots. These

data permit estimation of gross grain yield an~ certain components of

yiel~. For corn, the yield components are number of ears per unit area

and grain weight per ear. Soybean yield COMponents are number of plants

per unit area, number of pods per plant, and rean weigbt per pod.

During the OYS post-harvest interview, the farm operator is asked for

harvested acreage anrl production. For soybeans tbe operator is also asked

to specify the moisture content of the beans he harvested. The corn in-

terview does not ask for the m0fsture content. The post-harvest interview

therefore provides a separate estimate of net grain yield. A disadvantage

of the farmer reported yield is that its accuracy cannot he measured. The

post-harvest interview is usually conducted in a quarter of the samples
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for corn and half of the samples for soyheans ~ut in 1978 the interview

was performed for all corn and soyhean samples.

An ac~itional type of cata collected during the OYS is for harvest

loss determination. Harvest loss samples were laid out in one-fourth of

the corn sample fields and one-half of the soybean sample fields. The

harvest loss data combined with the pre-harvest data provide an OYS esti-
roateof net gr~in yielrl.

Since participation in OYS is voluntary, there are always a certain
number of OYS samples which are lost due to the refusal of the farm opera-

tor to cooperate with the survey. In addition to refusals, weather and

economic factors may cause the loss of samples. As long as the operator

continues to cooperate, OY counts ard measurements are made without regard

to the condition of the crop. In some cases the farmer may decide to plow

up his fiel~ or, in t~e case of corn, cut the crop for silage. In these

cases, OY data for the final pre-harvest visit is lost. Also, occasional-

ly OY data are obtained but farmer yield is not reporte~.

LANDSAT Data

The basic element of LANDSAT data is the set of measurements by the

sateJlite'~ multispectral scanner (MSS) of a 0.4 hectare (1.1 acre) area

of the earth's surface. The MSS measures the a~ount of radiart energy re-

flected and/or emitted from the earth's surface in four different regions,
called hands, of the electromagnetic spectrum. The MSS hands are desig-

nated MSS4 (green), MSS5 (red), and MSS6 and MSS7 (near infrared).

The individual 0.4 hectare MSS re~olution areas, referred to as

pixels, are arrayed along east-we~t running rows within the 185 kilometer

wide north-to-south pass of the LANDSAT satellite. A given point on the
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earth's surface is imaged at least once every eighteen days hy the same

LANDSAT satellite. At the time of this study, there were two LANDSAT

satellites in orhit with a nine day separation so that any given point on

the earth wou1~ have been imaged at least every nine days. Satellite

passes which are adjacent on the earth's surface are at least one day

apart with respect to their dates of imagery and have a 35% or more

sidelap.

Crop Areas from LA~~SAT Data

The utility of LANDSAT data in improving crop hectarage statistics for

multi-county areas and individual states has been demonstrated by a number

of ESS remote se~sing pro~ects. These studies have heen conducted for en-

tire states in Illinois, Kansas, Iowa, and Arizona and for suh-state areas

in California, Ar~ansas, South Dakota, and Missouri (4, 5, 6, 7, 8, 13,

15).

For estimating crop areas, ESS's approach to using LANDSAT data is as

a supplementary cata source to farmer-reported crop-type and field-size

cata collected by ESS's June Enumerative Survey. The JES data, which in-

dicate crop type by field, plus the corresponding LA~~SAT data determine

discriminant functions that are used to classify LANDSAT pixels as to

probahle crop type. Crop areas are then estimated by a regression estima-

tor raving farmer-reported acres as the primary variable and the LANDSAT

classification results as the auxiliary variable. The geographical region

constituting the domain of a regression estimator is called an analysis

district.
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Yield and Yield Indicators from LANDSAT Data

A number of researchers have found that LANDSAT data, or various de-

rived LANDSAT indices, are significantly correlated with yield or,

alternatively, with yield indicators such as leaf area index and green

biomass (3, 16, 18). The majority of these studies, however, have been
conducted with winter wheat. Some of the derived LANDSAT indices that

have been used in suc~ studies are listeo in Table 1.

Table 1 - LANDSAT indices.

Name

Sum

Difference

Ratio

Vegetative Index

Transformed Vegetative Index

Green Vegetative Index

Perpendicular Vegetative Index

5

Def1ni tion

SUM = MSS7 + MSSS

DIFF = MSS7 - MSSS

RATIO = MSS7/MSSS

VI ••DIFF /SUM

TVI7 - (VI + .5)1/2

GVI - -.290*MSS4 - .S62*MSSS
+.6*MSS6 + .49l*MSS7

PVI • «RGG2 - MSS5)2
+ (RGG4 - MSS7)2)1/2

where
RGG2 • .851*MSS5 + .355*MSS7
RGG4 • .355*MSS5 + .148*MSS7



DATA SOURCES

LANDSAT and JES Data

For purposes of estimating crop areas from LANDSAT data, ESS in 1978

processed twelve LANDSAT scenes covering the entire state of Iowa

(Figure 1 and Tah1e 2). In support of this effort, a data set of

farmer-reported field sizes and cover types for fields within 1978 corn

ancl soyrean ohjective-yield data were used to evaluate yield estimation

with the riased regression estimator.

~a~le 2 - Dates of LANDSAT imagery, Iowa pro ject , 1978.

Percentage Iowa
Path Row Date cloud cover Scene ID

30 30 August 19 (' 30167-]6274
31 August 19 0 30H 7-16280

29 30 August 9 0 21295-16013
31 August 9 40 21295-16020
32 August 18 0 30166-16224

2f 30 September " 60 30183-16162
31 September 4 0 30183-16164
32 Septemrer 4 0 30lR3-16l71

27 30 August 7 10 2129~-15500
~l August 7 15 21293-15502
32 August 7 10 21293-1550~

26 31 Au gust 6 0 21292-15444

OYS Data

For the yie1cl anrlLANDSAT study, more precise field-level yield esti-

mates were required than available from the OYS. Consequently, for each

OY sample three additional samples (six plots), callerl research samples,

were established on the final pre-harvest visit.
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The OY sample is generally laid out by counting random numbers of rows

and paces from the most accessible corner of the field. The rows and

paces are based on field size an~ determined in such a way that plots are

randomly selected from the set of all plots contained In a quarter of the
field. The research samples were similarly located from the other three

corners of the field. (Variations on this theme occurred in the few

fields which were irregular in shape.) The research plots were identical

to the OY plots with the exception that the ~-inch counts in the soybean
plots were not done since the 6-inch counts pertain primarily to

early-season yield forecasts and were thus not relevant to the research

study's objective of improving end-of-season yield estimates.

Of the initial 170 soybean samples, 126 had hoth OY data and farmer

reported yield. Out of t~ese 126 fields, 72 had harvest loss data. Of
the 240 initial corn samples, 166 had OY data and farmer reported yield.

Of these, 45 fields had harvest loss data.

All of the yield data were hand and machine edited for keypunching ac-

curacy and reasonableness. The machine edit checked numerous relation-

ships among the data to make sure that counts, measurements and weights

were not unreasonable.

Yield Estimatio~

The most direct way to estimate the field-level gross yield is to take

the weight of grain and the corresponding ground area and compute a weight

per unit area for each sample in the field. With just the OY sample, the

sample level yield would also be an estimate of the yield for the field.

A simple average of the OY sample yield and the three research sample

yields provides another, more precise field level estimate. When only the
OY sample is used, the estimate is called the OY estimate. When all four
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samples within a field are used, this is referred to as the research yield

estimate.

Field level variance was estimated hy considering each quarter of the

field to be a stratum and each sample to ~e a random sample within the

strata. Since each sample was restricted to lie within a particular quar-

ter of the field, the stratified variance estimate was preferred to assum-

ing the eight units were a simple random sample. Since the pro~a~ility of

an OY sample falling within a certain field was proportional to the size

of the field, the gross yield was estimated at higher aggregate levels hy

taking the simple average of the individual field level means. These mean

yields are referred to as direct expansion estimates. The associated var-

iance was estimated by the usual variance formula for a simple random

sample. Within and hetween field components of variance could also he

calculated if desired.~1

The direct expansion yield estimates could be made with either the OY

samples or with the research samples as well. At the state level, these

two estimates were very close. Net yield was estimated by subtracting the

mean harvest loss. A third yield estimate was ohtained ~y averaging the

farmer reported yields. For soyheans, the net direct expansion yield was

close to the farmer yield. For corn, this was not the case. However, the

farmer yield could not he adjusted to the same standard moisture level

which made comparison difficult. Tahle 3 shows means and variances for

corn and soybeans at the state level.

II Specific details
gate level means
naI report (12).
Branch.

concerning the estimation of field and higher aggre-
and variances from OY data are contained in an inter-

Copies may be obtained from the Yield Research
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Table 3 - Means and variances for various state-level yield estimators
(bu/acre) •

Number Variance Coefficien t
of of of

Field s Mean Mean Variation

Soybean Yield

Net Re search 126 38.13 .77 2.3%

Net OY 126 37.63 1.28 3.0%

Farmer 126 38.04 .73 2.27.

Corn Yield

Net Research 166 125.48 4.58 1.77.

Net OY 166 124.04 6.04 2.0%

Fa rmer 166 ]21.03 3.27 1.5%

Yield - LANDSAT Data Set

Because of unusahle LANDSAT data ~ue to cloud covert only 144 corn
fields and 98 soybean fields had OY data, farmer reported yield

information, and also LANDSAT data. After yield and LANDSAT data were ob-

tained for the same set of fields, an additional edit was performed. The

number of acres in each field was estimated using associated LANDSAT pixel

counts. This estimate was compared to the farmer reported planted and

harvested acres to spot possihle problems with the LANDSAT data not corre-

sponding closely with the same area the yield was estimated from. Several

mismatches were discovered which could sometimes be explained by a large

difference between farmer reports of planted and harvested acres. Other

mismatches could not be explained. As a result several fields were omit-

ted from the final yield-LANDSAT data set used for this study. The
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final numher of soybean fields totaled 96 while the corn fields dropped to

139. Table 4 summarizes the OY fields by type of fiel~-level data.

Table 4 - Distribution of samples for yield and LANDSAT data

Initial

Types of DatalJ

OY, FY

OY, FY, HL

OY, FY, LS

Final OY, FY, LS

Numt-er of
Soybean Samples

170

176

72

98

?6

Number of
Corn Samples

240

166

45

144

139

1/ OY - Objective yield
FY - Farmer reported yield
HL - Harvest loss
LS - LANDSAT

Haze Correction

A number of ohservation conditions can significantly alter LANDSAT

data by changing the re1ations~ip between the actual reflectance at the

crop canopy and the reflectance represented hy the LANDSAT digital

counts. These observation conditions include viewing and illumination

geometry, amount and distribution of haze in the atmosphere, amount of

water vapor, and amount and height distribution of cirrus clouds. Varying

degrees and combinations of these conditions make LftNDSAT data difficult

to interpret and can obscure or distort any true relationship hetween

yield and spectral reflectance which under uniform ohservation conditions

might otherwise be discernarle. The XSTAR haze correction algorithm,
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developed by Lambeck (10, 11), attempts to correct LANDSAT data to a

standard set of observation conditions. Because of the different Iowa

LANDSAT dates and hence different observation conditions, XSTAR correction

was investigated as a means of improving LANDSAT-yield relationships over

multiple image dates. Refer to Appendix C for a discussion of atmospheric

effects and correction techniques.

STATISTICAL METHODOLOGY

A regression estimator makes use of supplementary data having a known

population mean. However, since the population for yield estimation is
all analysis-area fields planted to the crop of interest, it is not pos-

sible to calculate a LANDSAT regression estimator for crop yield. This is

a result of lack of knowledge of field boundaries outside of JES segments,

which precludes the calculation of the proper population means for L~~DSAT

variables.

Consequently, an alternative estimator, called a biased regression

estimator, is derived in Appendix A. For LANDSAT variables this estimator

defines a pseudo-population, consisting of all analysis-area pixels c1as-

sified to the crop of interest (17). The form of the biased regression
estimator is as follows:

A-Preg - ~iased regression estimate of population-level yield

"
- FOE + B' (W - !.*)
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where
,.
- direct expansion estimate of population-level gross yield
PDE - calculated from plot data only

"yt/n

AYi - estimate of yield for sampled-field i calculated from plot
data only

n - number of sampled fields in analysis area

x* = vector of sample means of sampled-field means per pixel for
LANDSAT measurements and indices

n *- ~ ~ In
i-I

!!- vector of sampled-field i means per pixel for LANDSAT
measurements and indices

"B' - vector of estimated regression coefficients for regression of,. *
Yi on !.1

-and W - pseudo-population mean per pixel for LANDSAT measurements and
indices.

*Since the number of pixels used to calculate~, the vector of

sampled-field i means per pixel for LANDSAT measurements and indices, is a

measure of size of sampled field, the expectation of x* is

-X - population mean per pixel for LANDSAT measurements and indices.

- -The quantity D - X - ~, called the bias of the population mean or simply

M-bias, can be estimated from segment data (see Appendix B). As shown in

Appendix A, this permits the estimation of estimator bias,
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#to
• A A.Bias (rreg) ~ B'O

and estimator variance.
A-V(Preg)

where

A

~ rV(POE)] (1 - R2) (n-1)/(n-p-l) + 0' (V(B)] 0
A

~ [V(PDE)] [1 + nP-' (.!. ~t )-1 EJ (n-l) I(n-p-l)

A A

V(POE) = estimated variance of FOE

R2 • coefficient of determination for the regression of 1i on xt
*p • dimensionality of ~j

* * *and z - (Xl -!. I .!2 -*x * -*x - x )-n

Note that the estimator variance is an increasing function of both the

inability of LANDSAT data to predict yield, as measured by I - R2, and

of the LANDSAT bias of the mean. The influence of the latter on estimator

variance is indicated by

VIP • variance inflation factor

• estimator variance with estimated 0
estimator variance with 0 - 0

and on the mean square error.

13



by

~SEIF - mean-square-error inflation factor

_ estimator MSE with estimated D
estimator MSE with D = 0

The improvement, if any, of the biased regression estimator over the

direct expansion esti~ator is measured ry tre meap-square-error relative

efficiency:

~ A

FE - V(PDF)/ MSE (P ).reg

The biased regression estimator is only one of several different regres-

sion estimators applicable to LANDSAT-rased yfeld estimation. Alternative

estimators are discussed ip ftppepdix D.

ANALYSIS

Su~-state Analysis

Due to various acquisitio~ dates of the Iowa LA~~SAT imarery, associ-

ated cloud-cover prorlems, and the different ti~es at which ESS received

LANDSAT data, Iowa was partitione~ into Ie separate areas, cal]e~ analysis

districts, for the Iowa crop-area project (Figure 2). Analysis district

yield estimation with the biased-regression estimator using

non-haze-corrected data was evaluated in four of the analysis districts

1, 2A, 3C, and 4. Summary statistics for these four analysis districts

are given in Table 5.
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Tahle 5 - Summary statistics for fields with both yield and LANDSAT data

avg. std. dev.
analysis number of number of fields yieldl/ of a vg.

Crop district counties with both data (Bu/A) yield (Bu/A) C.V.(%)

Corn 1 20 4Q 1%.9 3.16 2.3
2A 12 25 145.5 3.40 2.3
3C 13 l~ 126.6 7.67 6.1
4 19 39 13[,.4 4.91 3.7

Soyheans 1 70 25 45.2 2.17 1..8
2A 12 33 42.9 1.£l8 4.4
~C 13 12 44.0 2.85 6.5
4 19 16 ? 9.9 2.11 5.3

1../ Mean per field of field-level gross yields estimated from 8 plots per field

Eleven differert LA~~SAT variables (four MSS bands plus the seven

indices in Ta~le 1) and two different metho~s of computinp.

LANDSAT-variable field means were evaluate~. The two ~ethods of computing

LANDSAT field means were hy using only interior pixels -- that is. pixels

completely interior to the field -- or all pixels having pixel center

points inside the field.

Analysis district estimates of single-variable M-biases are summarize~

in Table 6 for corn an~ in Table 7 for soybeans.
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Table 6 - Analysis district estimates of LANDSAT relative biases of the mean for corn

Estimated Relative Biases (%)

type Dist ribut ion.!.! Med fan
analysis of
district pixel +6 +4 +2 o -2 -4 -6 -8 -10 -12 -14 -16 absolute sampling

value std. cev.

all S G T R 1.4 0.5
5 6 47P D V

1
RT

interior G 7D 0.2 0.5
56S 4PV

all S
6G IF 1.1 0.6

5 47 IPTD V
2A I

S I
interior SP I 0.1 0.7

47 IV
RG6 ,DT

I

all G SPD iT 1.2 0.9
6 5 74 JRV

3C I
JT G R

interior J6SP V 0.7 1.1
1574 D
I
I

all 5 4 S ,6 T7 G P R DV 3.2 0.6
4 J

interior IS T G V 2.5 0.6
5 4 I 6 7 P R D,

1/ 4-MSS4. 5-MSSS. 6"MSS6. 7-MSS7.
P"PVI. S-SUM. D-DIFF. v-v I• T-TV I •
R-RATIO. G-GVI
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Table 7 - Analysjs district estimates of LANDSAT relative biases of the mean for
soybeans

Estimated Relative Biases (%)

type Distribution.!.! Med !an
analysis of
district pixel +6 +4 +2 o -2 -4 -6 -8 -10 -12 -14 -16 absolute ssmpli ng

f value std. dev.
I
Iall G V 3.4 1.1

5 4 IS T67 P R D
1 I

RD I
interior SP I 0.5 1.5

547G IT V
I

all I G 3.8 0.8
5 4 I 8T 76 P RV D

2A I

14VD
interlor SPG 0.2 0.9

5RlT76
I
I

all IT P G 1.2 1.5
541S76 VDR

3C IG PR T
interior D V 76S 45 I 1.8 1.6

I
I
I 5 V

all 1 T 4 RS 76 PG D 8.7 1.0
4

I 5
interior IT 4 R V S 76 P G D 6.1 1.4

I

1/ 4-MSS4. 5-MSS5. 6-MSS6. 7-MSS7.
P"PVI. S-SUM. D=DIFF. V-V I • T-1VI.
R-RATIO. G-GVI
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Items of note in these tables are that:

1) the rankings of LANDSAT variables according to estimated relative ab-

solute M-bias (ERAMB) differ considerably under different conditions

of analysis district, crop, and field-mean calculation;

2) TVI7 is the only variable having an ERAMB of less tban 2% across all
levels of all conditions;

3) if analysis district 4 is ignored, then TVI7 and SUM are the only var-

iables with less than 2% ERAMB across all remaining levels of all con-

ditions and;

4) for the interior-pixel case, TVI7, SUM, AND MSS4 are the only varia-

bles with less than 1% ERAMB for both corn and soybeans across all

a~alysis districts other than analysis district 4.
~e algebraic definitions of SUM and TVI partially explain the low

ERAMB performances for these variables. Note in Tables f and 7 that MSS5

and MSS7 often have large relative M-biases of opposite sign. Hence,

SUM-MSS5+MSS7 has a small M-hias. Note also that nearly always

ERAMB(SUM) ERAMB(VI) ERAMB(DIFF).

This is expected, at least for the upper bound, because SUM and DIFF

nearly always have M-biases of like sign and VI=DIFF/SUM. Finally, note

that in all cases

ERAMB(TVI) ERAMB(VI).

This also is expected because the TVI square-root transformation has the

limiting property that

ERAMB(TVI) - ERAMB(VI)/2 as ERAMB(VI) approaches zero.
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One of the summary measures displayed in Table~ 6 and 7 is the median

of ERAHE over variables for each analysis district an~ field-mean computa-

tion methorl. Figure 3 compares these merlian EFAMB's with the
acreage-study percentages of correct classification. Items of note in

Figure 3 are that ERAMB, at least as measured by the median of
individual-variahle ERAMB's:

1) has a rlecreasing relationship with percentage of correct

classification;

2) is less for interior pixels than for all field pixels in all cases ex-

cept one (analysis district 3C, soy~eans); and

3) fs extremely small (less than 0.4%) for interior pixels when the pro-

portion of correct classification exceeds 75%.
Estf~ator propert5es--that is, variance, ~ias, VIF, MSEIF, and rela-

tive efficiency were estimated for a large number of different

biased-regression estimators. The primary estimator variable was in all

cases the field-level yield estimated from 8 plots per field. The auxil-

iary variables were all combinations of one, two, or three of the Table 1

indices and/or LANDSAT bands. The estimators were then ranked by relative

efficiency. Tables 8 aT'd ~ list the "winners". Appenc:1ixE lists winners

plus runners up.

For the estimators in Tables 8 and 9, the relative efficiency when

field-level yield is estimated from two plots per field was also

calculated. Appendix F describes how the difference in results between

two and eight plots per field can be used to estimate relative efficiency

for the case of known field-level yield. Felative efficiencies for two

plots, eight plots, and known field yields are liste~ In Tables 10 and 11.
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Table 8 - Regression-like estimator "winners" for corn with field yields estimated
from 8 plots per field.

estimated estimated
analysis LANDSAT 2 relative relative
district variables.!.! R bias (%) VIF C.V.(%) p.f..5EIF root-MSE(%) RElI

1 -(S.R,G) .19 -0.04 1.003 2.2 1.003 2.2 1.15
-R .11 -0.18 1.001 2.2 1.007 2.2 1.1+.02
-(4,7,R) .20 0.67 1.026 2.2 1.127 2.3 1.1-

2A no significant correlations

3C -(6,7) .41 -0.5 1.005 4.9 1.015 5.0 1.6+(.35-.39)
-(R,G) .40 -0.5 1.002 5.0 1.011 5.0 1.6+. 21

4 -5 .11 -1.4 1.034 3.5 1.185 3.7 0.9+.09
-D .11 -1.7 1.052 3.5 1.283 3.9 0.<l+.08

l/ See footnote, Table 6. Symbols: - and + indicate interior and field
pixels, respectively.
2/ The relative efficiency entry is of the form RE ~ SD(RE). where SD(RE) is
the one standard deviation uncertainty of the estimated relative efficiency due
to sampling error in estimating LANDSAT hiases of the mean. A range for SD(RE)
corresponds to bounding from above and below the covariances among bias compo-
nents in lieu of (properly) estimating the needed covariances.
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Table 9 - Regression-like estimator "winners" for soybeans wi tl1Held yields estimated
from ~ plots per field.

analysis LANDSAT 2
district varlab1esl! R

estimated
relative
bias (%) VIF C.V.(%)

estimated
relative

MSEIF root-MSE(%)

1 -(4,S) .66 0.007 1.012 2.9 1.012 2.9 2.7+.04
-(4,7) .65 -0.09 1.012 2.9 1.013 3.0 2.7+.12
-D .64 0.07 1.00002 3.0 1.0006 3.0 2.7+.12

2A -(6,G) .52 0.7 1.019 3.2 1.073 3.2 1.9+(1.4-1.7)-v .48 -0.1 1.00 01 3.2 1.001 3.2 1.9+.05
-4 .48 0.2 1.0002 3.3 1.004 3.3 1.9+.05
-T .48 -0.2 1.0002 3.3 1.0005 3.3 1.9+.05

3C +4 .42 0.6 1.002 5.3 1.015 5.3 1.5+.11
+(S ,G) .40 0.6 1.010 5.4 1.023 5.4 1.5+.21
+( S ,T) .38 -0.4 1.003 5.4 1.009 5.4 1.5+.10
+(7,V) .38 0.07 1.005 5.4 1.005 5.4 1.5+.02
+(P,V) .38 0.09 1.005 5.5 1.005 5.5 1.5+.04

4 no significant correlations

1/ See Footnote, Table 8.

2/ See Footnote, Table 8.
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Table 10 - Comparison of 2-p1otst 8-plots, and predJcted known-fie1d-yie1d results for corn

(CV( DE» variables (2) (8) (k) (2) (8) (k) (2) (8) (k) (n (8) (2) (8)

1 -(S,RtG) .15 .19 .26 2.3 2.2 2.1 1.1 1.15 1.3 .13 .09 .85 .93
(2•3% ) -R .08 .11 .15 2.2 2.2 2.1 1.1 1.1 1.15 .09 .04 .93 .96

-(4,7tR) .08 .12 .15 2.3 2.3 2.3 1.1 1.1 1.1 .08 .03 .93 .97

3C -(6t7) .40 .40 .40 5.0 5.0 5.0 1.6 1.6 1.6 0 0 1.00 1.00
(6.1% ) -(R,G) .40 .40 .40 5.0 5.0 5.0 1.6 1.6 1.6 0 0 1.00 1.00

4 -5 .07 .11 .14 3.8 3.7 3.6 0.9 0.9 0.9 .08 .03 .93 .97
(3.7%) -D .06 .11 .15 4.0 3.9 3.8 0.9 0.9 0.9 .10 .04 .91 .96

N
N

analysis
dis tiic t LAND SAt!./

est1mated2/ relative
Toot-MSE (%) REl/ f f1el~/ max R2~/

1/ See footnote, Table 8.

2/ (2)· 2 plots/field, (8) = 8 plots/field
(k) - prediction for known fiel~ yield

3/ Calculated with MSElF for 8 plots/field
,.

4/ ffield· (estImated) fraction of MSE(Preg) attributable to estimation of field-level yield

51 max R2 • (estImated) maximum R2i l.e. R2 when there exIsts a perfect linear relationship between Xi
and known Yi



Table 11 - Comparison of 2-p1ot, 8-p1ot, and predicted known-field-yield results for soybeans

(CV( DE» variables (2) (8) (k) (2) (8) (k) (2) (8) (k) (2) (8) (2) (8)

1 -(4,5) .41 .66 .76 3.8 2.9 2.4 1.6 2.7 3.8 .59 .29 .65 .90
(4.8%) -(4,7) .39 .65 .76 4.0 3.0 2.5 1.5 2.7 3.9 .61 .31 .63 .89

D .38 .64 .73 3.9 3.0 2.6 1.6 2.7 3.6 .56 .25 .65 .91

2A -(6,G) .32 .52 .73 3.8 3.2 7.4 1.3 1.9 3.4 .60 .44 .51 .79
(4 •4% ) -v .27 .47 .67 3.8 3.2 2.5 1.4 1.9 3.1 .55 .38 .60 .80

-4 .33 .46 .62 3.7 3.3 2.8 1.5 1.9 2.7 .43 .23 .71 .84
-T .25 .46 .67 2.6 3.3 2.6 1.2 1.9 3.1 .56 .39 .58 .79

3C +4 .31 .42 .53 5.~ 5.3 4.£1 1.3 1.5 1.9 .32 .19 .78 .89
(6.5%) +(S,G) .22 .46 .64 6.5 5.4 4.4 1.0 1.5 2.3 .54 .33 .58 .82

+( S ,T) .25 .45 .60 6.3 5.4 4.6 1.1 1.5 2.1 .47 .27 .65 .85
+(7, V) .24 .45 .60 6.3 5.4 4.6 1.1 1.5 2.1 .47 .27 .66 .85
+(P,V) .24 .44 .60 6.4 5.5 4.6 1.1 1.5 2.1 .47 .29 .66 .84

ana1ysi s
clistJiCt LANDSAT.!.!

est1matedl/ re1at1ve
root-MSE (X) Rl!2/ f fie1d~/

1/, ]j, "2../, ~/, 2/ See footnotes, Table 10.



State-level Analysis

There are at least two ways to obtain an estimate of the mean yield

for the state with the biased-regression estimator. The first is to sim-

ply apply the hiased-regression estimator to all fields with both yield

and LANDSAT data. An alternative method would be a union of the separate

analysis district regression estimates with RE greater than one and the

direct expansion estimates for those analysis districts with RE less than

one or cloud cover. The first method is presented here while the second

is deferred for later consideration except to say that results appear to

be similar.

There are many alternative levels at which to regress y on x. While

the most natural is probably the field level, aggregation of yield and

LANDSAT provides inference to larger areas. As discussed earlier, we have

three field-level yield estimates -- OY estimate (two units), research es-

timate (eight units) and farmer reported yield. LANDSAT means can ~e cal-

culated on any aggregate level using two or more pixels. There are two

main factors which determine whether the hiased-regression estimator is an

improvement over the direct expansion estimator -- the magnitude of R2
and the size of the bias, D.

We would most like to gain in relative efficiency by using the OY es-

timate since this does not require yield data collection above what is

normally obtained in the regular operating program. Also, use of the OY

estimate avoids questions related to the credibility of the farmer

reported yield. However, the OY estimate is generally imprecise at the

field level. If we regress OY on the LANDSAT variable(s) at the field
level, the imprecision of the yield estimate might destroy any correlation

which could have been measured had we known the "true" yield. Of course,
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if the LANDSAT data do not relate well to the radiance directly above the

crop canopy, this also effects the R2 measured by the regression. Since
it is not necessary to regress y on x at the field level, several fields

can ~e aggregated so that more precise yield estimates can be made. One

consideration is to retain a sufficient number of aggregated data points

to avoid po~sible ~ias from a small sample size. To obtain more precise

yield estimates at an aggregate level, fields were blocked together

geographically by grouping adjacent counties within analysis districts.
We tried to end up with approximately 25 aggregated data points. For

soyheans, each ~lock contained a group of counties with roughly 4 OY

samples. Since we had no control over the distri~ution of samples within

counties, some blocks had as few as two samples or as many as eight. The

total number of soybean blocks was 24. In the case of corn, where we had

more samples to work with, blocks contained roughly 5 samples each but

varied from one to seven. The block with one sample occurred because this
was the only sample in the entire analysis district. The total number of

corn blocks was 29.

The basis for area blocking is that the true yield is thought to be

somewhat less variable for small areas of land than over large areas which

may contain wi~ely differing weather ccndltions, soils and other factors

related to yield. If area blocks do contain fairly homogeneous yields,

four or five OY samples might provide a more precise block level estimate

than individual field-level estimates. In the process of trying to keep

roughly the same number of samples in each block, the number of counties

per block ranges from one to seven. Unfortunately, the larger blocks

start to lose any advantage of being small, homogeneous areas.
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There are a multitude of different biased-regression estimators which

can be calculated to find the one which maximizes the relative

efficiency. We have eleven LANDSAT variables -- four channel means and

seven indices. Each LANDSAT variahle has been calculated from all pixels

classified to the field or from just those pixels which are completely in-

terior to the field boundaries. Each LANDSAT variable has also been cal-

culated with uncorrected and corrected pixels (refer to Appendix C for the

haze correction algorithm). This gives four sets of eleven LANDSAT

variables. Because the LANDSAT variables are highly correlated, we likely

will obtain the best results with either one or two regressor variables.

The set of dependent variables consists of our three yield estimates. The

regressions can be run with field-level data or the area-blocked data.

To reduce the number of regression models to be considered, we recall

that R2 and D are the two principle factors in maximizing the relative

efficiency. An indicator combining R2 and the associated bias was used

to select models with the best chance of success. The Statistical Analy-

sis System (2) has a procedure called RSQUARE which calculates the F2

values for all the possible combinations of dependent and regressor varia-

bles it is given. If only R2 values are needed, it is much more effi-

cient than ohtaining all the other associated regression parameters. We

ran the RSQUARE procedure to determine which one and two-variable regres-

sions had the highest F2 values for all previously mentioned yield and

LANDSAT variables with and without blocking. Bias was estimated for each

L~mSAT varia~le from the JES segment data (details In Appendix B). The
Arelative bias was calculated by dividing each element in Q by the corre-

~
sponding X. The index used to select the regressions with the greatest
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potential for maximizing the relative efficiency is the following:

I ••

where i = 1, •••• , p regressor variables

Since we are searching for regressions with high R2 and low relative

bias, the lowest values of I were selected and the other factors needed to

calculate the relative efficiencies were estimated. When blocking was

used, the regressions were weighted to account for differences in the num-

ber of observations in the blocks.

Table 12 shows the relative hias in percent for each LANDSAT

variable. It can be seen that the biases span a wide range all the way

from .06% to 10.12%. The LANDSAT variables from interior pixels

generally, but not always, had smaller biases than the corresponding vari-

abIes calculated from all the pixels. Also, with the exception of the in-
terior soybean variables, the corrected LANDSAT variables generally had

larger hias than the corresponding uncorrected variables. The signs asso-
ciated with the biases have been included in Table 12. This is important

because in the two-variable regressions the biases might offset one anoth-

er so that even though they are comparatively large individually, the rel-

ative efficiency might not be adversely affected.

Tables 13 and 14 summarize the relative efficiencies greater than one

for each yield estimate. These are the highest RE's which were found by

using the previously mentioned index but others may have been found if all

possible combinations had heen considered. However, it is unlikely that
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Ta~1e 12 - State-level relative biases expressed in percent

LANDSAT Uncorrected Corrected
Varia t-.1e.!./ All Interior All Interior

Soyheans

4 +I.80 +.5fl +.64 -.25
5 +3.03 +.22 +I.47 -.85
6 -.84 +1.65 -1.15 +I.09
7 -1.42 +1.43 -1.ft4 +.96
P -2.2f· +I.n4 -2.43 +1.39
S -.19 +l.ll -.63 +.3A
D -4 •17 +2.11 -4.59 +2.51
V -3.6fl +1.24 -2.96 +3.02
T -.90 +.27 -.6 L +.64
R -4.10 +1.27 -2.30 +2.19
G -2.1J +1. 92 -2.25 +1.66

Corn

4 +I.88 +.25 +2.2? +1.1£1
5 +3.43 +.43 +5.32 +3.19
6 -.34 -I. 54 +.73 -.37
7 -.79 -1.27 -.06 -.51
p -1.£17 -1.69 -1.85 -1. 72
S +.f-O -.72 +1.96 +.fl6
I:' -4.82 -2.81 -8.17 -5.86
V -5.30 -2.15 -10.12 -6.90
T -I.1B -.51 -1.77 -1.22
R -2.73 -.82 -4.97 -3.73
G -1.88 -2.19 -I.41 -1.R8

11 See footnote Tarle 6 for variarle rlefinitions.
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Table 13 - Relative efficiencies for soy~ean regression estimators

Independent Relative
Blocking VariaHe(s).!l R2 Efficiency

Dependent Variable - OYEstimate

No TC4*, ICS .0565* 1.0323
No IT .0391 1.0241
No S .0334 1.0221
No IS, IT* .0 5e2* 1.0134
Yes IT, IR .1217 1.0124
No I CT*, ICR .0530* 1.0100
No ICT* .0474* 1.0059

Dependent Variable - Research Yield Estimate

No IT* .1324* 1.1216
No 1('4*, ICS* .1526* 1.1166
Yes 14, IS .18R5* 1.1096
No S* .1080* 1.1041
No 15* • IT* .1904* 1.0911
Yes IC4, Ies .1289 1.0791
Yes IT .1172 L 0629
Yes IC4 .0831 1.0384
Yes IC4, ICT .1167 1.0285
No S*, T* .1880* 1. 0211
No 17* .1810* 1.0146
Yes IS .0541 1.0110

Dependent Variable - Farmer Yield Estimate

Yes IC4* .2025*
Yes IC4, Ie5 .2104*
No 1('4*, Ie5 .17"0*
No IC4* .1489*
No I C4*, ICS .1508*
Yes C4* .2047*

1.1785
1.1SR 2
1.1574
1. 1488
1. 1411
1.0258

1/ See footnote Table 6 for variable definitions. In addition, a prefix
"I" indicates interior pixels only and a prefix "CD indicates haze
correction.

* Statistical significance at the 5% level.
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Table l~ - Relative efficiencies for corn regression estimators

Independent Re la tive
Blocking Variable(s).!.1 R2 Efficiency

Dependent Variable - OY Estimate

Yes 6 •0590 1.0230

Dependent Variable - Research Yield Estimate

Yes 14*, IS .lflql* 1.0633
No 14* .0526* 1.0443
Yes 14, 17 .1771 * 1.0433
Yes IT .1258 1.0381
Yes 14 .07H 1.0366
No 14, IT .0746* 1.0074
No C7 .0132 1.0060

Dependent Variatle - Farmer Yield Estimate

Yes
Yes

6
14, 16*

.1]79

.1891*
I.083P.
] .0170

II See footnote Table 13.

* Statistical significance at 5% level.

there are any greater relative efficiencies than the highest of those

presented. The column headed "Blocking" indicates whether or not the data

were blocked by geographical areas. The independent variables are io some

cases prefixed with an "I", a "c" or hoth. The "I" indicates interior

pixels only were used and the "c" indicates that the XSTAR haze correction

was applied. The presence of an asterisk (*) indicates that either the

coefficient of the given variable or the p2 value is significantly dif-

ferent from zero at the .05 level.
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Blocking the data was of some value for corn but not for soybeans.

Not surprisingly, use of interior pixels generally gave the highest rela-

tive efficiencies. The use of corrected LANDSAT data was of some value

for soybeans but not for corn. As would be expected, the highest RE for

t~e research yield esti~ate was greater than the highest RE for the OY
estimate.

Interestingly, the highest relative efficiency for each crop occurred

with the farmer reported yield. One would expect LANDSAT data to be more

strongly related to gross yield than net yield since the amount of harvest

loss may be completely unrelated to the plant characteristics indicated by

solar reflectance. If harvest loss was fairly consistent from field to

field then whether net or gross yield was used would not really matter.

However, our somewhat limited harvest loss data were roughly two to three

times more variable than the corresponding OY data. The comparatively

high RE for farmer yield is of limited value because the accuracy of the

direct farmer yield estimate cannot be measured.

It should also be pointed out from Tables 13 and 14 that, with two

exceptions, at most only one coefficient in the two-variable regressions

was significantly different from zero. This is largely due to strong lin-

ear dependencies among the LANDSAT variables which tend to inflate the

variance of the coefficient estimates. This is why we did not investigate

multiple regressions with more than two variables.

Compared to relative efficiencies obtained in LANDSAT-acreage studies,

our best are low. The question which needs to be asked then is how high

of a FE is needed to obtain some benefit? Clearly, if LANDSAT data is

being obtained solely for improving yield estimates, the cost could not be

justified with the results we have demonstrated. However, if the LANDSAT
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data are available for yield estimation at no cost because it has already
been obtained for improving acreage estimates then any gain in yield esti-

mation efficiency is of use. Actually, we may not really need to improve
the precision of our state level yield estimates in major producing

states. If the direct expansion estimate has only 2% error then Improve-
ment might be considered a waste of resources.

Rather than talking about improving the direct expansion estimate, we

would like to demonstrate how much might be saved in reduced sample size

by using the regression estimator and keeping the precision the same. Ta-

ble 15 shows the sample sizes needed to obtain a 2% CV at the state level

with various relative efficiencies. The FE of 1.00 shows the needed sam-

pIe size when only the direct expansion estimator is used.

Table 15 - Comparison of sample sizes nee~ed for a 2% state level coeffi-
cient of variation with various relative efficiencies and esti-
mators

Relative Soybean Sample Corn Sample
Efficiency Estimator: OY Pe search OY Fesearch

1.00 192 107 131 93
1.01 190 105 130 92
1.02 IP8 105 129 91
1.05 183 102 125 89
1.10 174 97 119 85
1.15 167 93 114 81
1.20 160 89 109 78
1.25 153 85 105 74
1.30 148 82 101 72
1.35 142 79 97 69
1.40 137 76 9" 66
1.45 132 74 90 64
1.50 128 71 e7 62

32



Table 16 - Estimated cost savings using highest FE's from Tables 13 and 14

Total cost per sample (2 plots)
for entire survey ••••••

Total cost per sample (8 plots)
for entire survey ••••••

............... $13 5.00

215.00

Total cost per sample (2 plots)
for final pre-hRrvest visit only

Total cost per sample (8 plots)
for final pre-harvest visit only

37.50

117.50

Soybeans.!.! Corn.!.!
Method I Method II Uethod I Method II

Estimator Cost ,: Cost % Cost % Cost %

Direct Expansion $25,900 100 $25,900 100 $I7,700 100 $I7,700 100

OY (2 plots) 25,100 97 15,700 99 17,300 98 17,550 99

Research (8 plots) 20,400 79 29,~00 115 le,700 106 23.000 130

1/ Method I assumes that samples in excess of indicated sample size are eliminated
for entire survey period. A corresponding number of post-harvest interviews and
harvest-loss samples are eliminated. Method II assumes that only the final
pre-harvest visit is eliminated for samples in excess of indicated sample size.
The number of post-harvest interviews and harvest-loss samples remains
unchanged.

The sample sizes were calculated from the yield-LANDSAT data set which was

used for the preceding state-level analysis. It should be pointed out

that these sample sizes pertain to gross yield estimates. However, the

required sample size for an equally precise net yield estimate would be

roughly the same. This is so, at least for this data set, because the
negative covariance observed between gross yield and harvest loss approxi-

mately offsets the harvest loss variance.
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The actual initial sample sizes were 170 for soybeans and 240 for

corn. Therefore, in Iowa in 1978 the soyhean sample was not large enough

to ohtain a 2% CV while the corn sample was larger than it nee~ed to be

for a 2% CV. For sake of example, it can ~e inferred from Table 15 that

the sample size could be reduced 23% with either the soybean or corn OY

regression estimator if the relative efficiency was 1.3. If eight units

were laid out in each field as was done to ohtain the research data then a

relative efficiency of 1.3 would allow a 57% re~uction is sample size for

soyheans and 45% for corn.

Table 16 gives some cost figures associated with the highest relative

efficiencie~ from Tables 13 and 14 using two different methods. These

cost figures are rough estimates based on 197B Iowa data showing the

length of time taken for various field enumerator activities and other

cost data from the Data Collection Branch. The figures attempt to account

for costs associated with field enumeration, travel to and from the sample

fields, lahoratory processing and editing. Costs related to supplies,

forms, manuals, equipment and computer processing are not included. The

figures are intended to be used for demonstration purposes only.

TWo different methods were used to calculate the survey costs for the

three estimators. The first method assumes that the sample size for the

entire survey period can be reduced to the level indicated by the relative

efficiency of the regression estimator. This means that less data would

be collected to make early season yield forecasts. While the LANDSAT data

possibly could be of some henefit for yield forecasting, we have only ad-

dressed the estimation phase when yield data are available just before

harvest. It is probahly unreasonable to assume that the yield forecasting

program could he successfully run with a greatly reduced sample size. The
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second method assumes that just the final pre-harvest visit is eliminated

for those samples in excess of the indicated sample size.

It is evi~ent from Ta~le 16 that the modest gains in relative effi-

ciency demonstrated with the biased-regression estimator produce small

savings. It may well be, however, that other alternative regression esti-

mators proposed in Appendix D may work better.
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Appendix A - PPS Estimators

Direct-Expansion Estimator

In objective yield procedures for corn and soybeans, the fields con-
•taining gross yield plots are selected by approximate PPS (probability

proportional to size) sampling of fields from the JES sample of segments.

Since an equal number of plots are laid out in each sampled field (with

multiple selections of the same field being considered different sampled

fields), the sample of plots is a self-weighted sample from the population

of all petmissible plot locations. For data which is available only at

field level, however, such as in this case LANDSAT data, the PPS sampling

probabilities must ne considered in estimators involving field totals.

In such a situation, it 1s advantageous to think of the selection of

objective yield fields as cluster sampling such that fields are sample

units and acres inside fields are population elements. Population-level

yield is then simply population-mean-per-element of production, which we
=denote P. A key result from the theory of PPS sampling is that the sample

mean of

sample-unit datum
sample-unit size

is an unbiased estimator of the population mean per element. Thus, an

unbiased direct-expansion estimator of P is the sample mean of

production of field i_yield of field i.size of field i

In other words, the PPS weighting required in the direct-expansion estima-
-tor of P transfo~s the estimator into an unweighted sample mean of field

yield.
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As is the case in objective-yield procedures, PPS-selected sample

units are often suhsampled by independent simple random sampling in each

sample unit. Sample-unit data is then not available but can be unhiasedly

estimated from subsample data. A second major result from PPS sampling

theory is that in this situation single-stage PPS sampling formulas for

various unbiased estimators and associated estimated variances remain

valid when estimated sample-unit data is used instead of known sample-unit

data. The direct-expansion estimator for P is an example of such an

estimator.

Regression and Regression-like Estimators

The availability of field-level LANDSAT variables permits the calcula-
A

tion of the difference estimator Pdiff(!o) which is the sample mean of

*Y
i

LANDSAT-adjusted field yield of sampled field

= Yi + B'(X - x*)
-0 - -i

where

Yi - yield of sampled field i

~ = an arbitrary vector of constants

*~ - vector of means per pixel for sampled field i of LANDSAT
measurements and indices

-and X = vector of population means per pixel of LANDSAT measurements and
indices.
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~-The variance of Pd iff<!o) is minimized by

!o - B - <~ A ~)-l Z A Y---
whe re

* * = * -Z - (~1 - X !.2 - X ~ - X)

with N = number of fields in the population

A = diagonal matrix with ith diagonal entry equal to the size of
field i. i=1. 2, •••• N

and Y = population column vector of field yields.

When the asymptotically unbiased estimate of !.

where z and yare sample analogues of Z and Y. respectively. is substi-
A

tuted into Pdiff. a regression estimator is obtained. As in the case of

the direct-expansion estimator, when sample units are subsampled the
AYi's are replaced with estimated Yi'S determined from subsample ~ata.

Related to the regression estimator is an estimator we call a biased

regression estimator. It has the same form as the regression estimator

except that X is not known and is thus replaced by a proxy value. denoted
w.
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Appendix B - Estimation of D •••J - w
......

D - X - W is tpe difference of two population-means-per-elements

corresponding to two different populations. The population for X is

U1 •••(pixels associated with fields planted to the crop of
interest)

or, alternatively,

U2 • (fiel~-interior pixels associated with fields planted to
the crop of interest),

U' (pixels classified to the crop of interest).

D can be estimated from JES segment data, plus corresponding raw and
cJassifie~ LANDSAT data, ~y estimating 1and ~ separately.

X is estimated as fo]]ovs:

Let

~~j •••LANDSAT variah1e vector for jth pixel in segment s of
stratum h,

Ihsj •••an indicator which is I if the pixel for ~sj is in
U1 (U2) and is 0 if not,

~hs .1.. Ihs~~ns.i'j

mhs ...t Ihsj,j

and

Then

•••expansion factor for stratum h.
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In a similar fashion, W is estimate~ as follows:

Let
,

Ih~j '"'an in~icator wh5ch is 1 if the pixel for ~s~ is in U'
and is 0 if not,

,
!h~ EO tIl1!'.~vns.1

and

Then

Thus

,.
'"'W

t. '= j Ihsjo

t(* Eh ~ wt.s)/(t Eh f mhs) 0

.•••• A A
D = X - w.

,..
A rather lengt~y expression for the approximate variance of D can ~e

ohtaine~ without ~ifficu]ty r.y using the approximation

Cov(a/b, c/d) = (EbEd)-lCov(a,c) - (EhE2d)-lEcCov(a,d)
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Appendix C - Faze Correction

This is a F.eneraJ review of the factors tpat make the reflectance

measured ~y LANDSAT differept from the reflectance at the earth's

surface. ~uch of the information to follow is ~ased on a discussion of

atmospheric radiative transfer theory ~y Ficnar~son, et ale (14). Specif-

ic equations in the Richardsop paper were takep from previous work hy

various authors. Our purpose here is not to present the actual theory ~o

the rea~er is referred to the reference sectiop of the Richard~on paper

for sources of the theory.

The radiance detecte~ ~y LANDSAT is a function of reflectance at the

earth's surface, total incident solar irradiance, atmospheric

transmittance and path radiance. The first three factors mentioned are

multiplicative while the fourth is additive. The reflectance at the

earth's surface is, of course, what we would like to o~tain since it has

the most direct relationship to the plant canopy (or whatever else is on

the earth's surface).

Simplistically speakipg, the total incident solar irradiance refers to

the amount of the electromagnetic radiation from the sun in the particular

wavelengths of interest that actually reaches the earth's surface. The

atmospheric transmittance affects both incident solar irradiance (sun to

surface) and reflected solar radiance (surface to satellite). The path

radiance arises from atmospheric scattering and absorption of the incident

irradiance and reflected radiance.

The total incident solar irradiance is composed of direct and diffuse

components. The direct component is a function of solar irradiance at the

top of the atmosphere. This varies according to the earth-sun distance,

atmospheric transmittance between the sun and the earth, and the solar
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zenith angle. The diffuse component is the part of the total incident so-

lar irradiance which does not directly penetrate the atmosphere but does

reach the earth by bouncing off of various atmospheric scatterers. The

portion of incident irradiance which does not reach the earth is included

in the path radiance.

The atmospheric transmittance is a function of the optical thickness

of the atmosphere and the zenith angle -- sun angle if irradiance is ~eing

considered or sensor angle if radiance. Since the multispectral scanner

on LANDSAT moves laterally over an arc of about 11.6°, the sensor or view

angle varies from -5.8° to +5.8° of nadir. In many applications, the sen-

sor zenith angle is assumed to be zero. The optical thickness of the

atmosphere is a measure of scattering and absorption due to gaseous

molecules, aerosol particulates and water molecules. Water absorption is

generally assumed to be negligible in LANDSAT hands 4, 5 and 6 but not in

band 7. Scattering is more severe for the shorter wavelengths.

Needless to say, the atmospheric effect on solar reflectance is a com-

plex interaction of many factors. Some of these can be measured directly

and others cannot. The problem of adjusting for atmospheric effect has

fallen under the general heading of haze correction. There are many ways

to approach the problem but perhaps the best way in terms of potential ac-

curacy is to measure the solar reflectance at the plant canopy with a

spectroradiometer and adjust the corresponding LANDSAT data accordingly.

To work effectively, however, many ground measurements have to be taken to

a~equately estimate mean reflectance for any area large enough to obtain

corresponoing LANDSAT data. Since registration errors are considered to

be in the neighborhood of plus or minus one half pixel, it would be
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difficult to match ground data with individual pixels. Perhaps one could

match ground data with 10 to 15 pixel areas and presumably reduce bias due

to registration error but a large number of radiometer measurements would

be needed to estimate mean canopy reflectance with good precision. Haze

correction by using ground data can work well but is very expensive for

large land areas.

Another. less expensive method of haze correction was developed by

Ahern et al. (1). and tested in the previously mentioned paper by

Richardson et al. Ahern's method makes use of LANDSAT measured radiance

of clear water bodies to infer the various parameters needed to apply

radiative transfer equations to other surfaces such as plant canopies.

Clear water bodies are used because the interaction of solar irradiance

with water is sufficiently simplified to permit the estimation of path ra-

diance which cannot be measured directly. With the estimation of the oth-

er radiative transfer factors mentioned earlier. an adjustment can be
found to change the radiance at the top of the atmosphere as measured by

LANDSAT to the radiance at the earth's surface. Of course. implicit in

this method is the assumption that the composition of the atmosphere over

the lake is the same as that for the other areas of interest.

Ahern's method has the advantage that expensive ground radiometric

data are not required. Several apparent disadvantages are that clear

water bodies may not be available or near the agricultural areas of

interest. Also. Ahern's method assumes that the water bodies are. in
fact. clear and calm. Suspended particles change the transmittance prop-

erties of the water and. hence. the radiance of the water. Rough water

surfaces reflect differently due to increased surface area. glint and

shadow. The depth of the water body makes a difference because in
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clear, shallow water the bottom would reflect according to its

appearance. Despite all the possible complications, Richardson et al.

reported that LANDSAT data adjusted by Ahern's method did not significant-

ly differ from corresponding ground-based spectroradiometer measurements

for four prominent south Texas rangeland plants.

A third method of haze correction which does not employ any of the

previously mentioned techniques is the XSTAR Haze Correction Algorithm as

proposed by Lambeck (10, 11). The hasis for the XSTAR correction was de-

scribed in a paper by Kauth and Thomas (9). We shall present a condensed

description of the underlying logic.

The basis of the method is an attempt to view the life span of a crop

in 4-dimensional LANDSAT signal space. While it is difficult to view any-

thing in four dimensions, Kauth has conceived an image of a "tasselled

cap" to aid in discussion. The tasselled cap was envisioned by examining

2-dimensional plots of the LANDSAT ~ands for an agricultural scene which

had a wide range of cover types and soil backgrounds during mid-June. The

2-dimensional plots revealed a triangular shape when bands 4 or 5 were

plotted against bands 6 or 7. The plots were essentially linear with band

4 versus 5 or band 6 versus 7. In 4-dimensions, the picture would resem-
ble a flattened triangular structure. The triangle shape can be explained

with a canopy model using wavelengths at the midpoints of bands 5 and 6.

Figure Cl has been reproduced from the paper by Kauth and Thomas.

In Figure Cl, points lA and lB represent the extremes of soil color

dark to light. Intermediate shades would fall approximately on a line

connecting the two points. This line (called the line of soils) forms the

base of the triangle seen when viewing a general agricultural scene.
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As the crop (in this case wheat) grows out of the soil, a triangular

shape develops to the left of the line of soils. This shape arises from

the fact that soil reflects more irradiance than green vegetation in the

.65 p-m wavelength and, except where the soil is very light, just the oppo-

site is true in the .75 14m wavelength. The apex of the triangle corre-

sponds to full green canopy cover and is independent of soil backgound so

long as canopy cover is full or near full. As the crop yellows and leaves

start to senesce, the line of reflectance appears to fall back toward the

line of soils. This is true but the line is actually in another plane.

The 4-dimensional triangular shape is refined somewhat by the

tasselled cap image. The base of the cap corresponds to the plane of

soils. A plane is used rather than a line because in analyzing the prin-

cipal spectral components of a broad range of soil reflectances, the first

principal component was about 7 times larger than the second, 12 times

larger than the third and 23 times larger than the fourth. The first two

principal components contain most of the spectral information. The top of

the cap is the area of green vegetation. The tassells correspond to yel-

low vegetation of various shades and fall back to the plane of the soils.
Since all the LANDSAT bands contain varying degrees of information

about the soil and green and yellow vegetation, Kauth proposed a transfor-

mation of the LANDSAT data to separate soil and vegetation effects. This

transformation is as follows:

u - RT x + r
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where x is the LANDSAT signal vector,

u is the transformed vector,

r is an arbitrary constant to prevent negative values, and

R is a rotation matrix in which the columns are unit vectors all
orthogonal to each other.

The columns of R are as follows:

Rl is a unit vector pointing along the major axis of the plane
of soils,

R2 is orthogonal to Rl' and pointing toward the green area at
the apex of the triangle,

R3 is orthogonal to RI and R2 and points to a point in the
yellow region, and

The projection of a data point onto RI, is a feature called

"brightness." The projection onto R2 is called "green stuff." The

projection onto R3 is "yellow stuff." The fourth feature arising from

the somewhat vague vector R4 has an equally vague name, "non-such." If

the R matrix is chosen properly, plots of the transformed bands will show

orthogonality and magnitude. The plots in the Kauth paper revealed or-

thogonality among transformed bands and magnitude as measured by the range

of values was greatest for the first two bands, much less for the third

and practically nothing contained In the fourth. These results were con-

slstent with the particular agricultural scene being viewed.

Among other things, Kauth suggested that the transformed data could be

used to diagnose the presence of certain external effects such as haze,
water vapor, sun angle and view angle. In the case of haze, the

54



transformed hands would suffer a negative shift in the "yellow stuff"

direction accompanied by a positive shift in brightness and a negative

shift in greenness. Haze also causes a general loss of contrast. These

shifts can be large relative to the magnitude of the reflectances without
."haze. If one knows generally what to expect in a particular agricultural

scene, external effects can be diagnosed and adjusted for.

The XSTAR haze correction adjusts for differences in sun angle;

diagnoses pixels which are garbled, clouds, water or cloud shadows; and

adjusts for haze. Since the XSTAR correction is comparatively easy to use

and does not require LANDSAT data for clear water bodies or ground re-

flectance measurements, we chose to use it in our study. A method along

the lines Ahern suggested appears promising and is deferred for future
research. Since our yield-LANDSAT data set is thought to be clean as far

as garbled pixels, clouds, water or cloud shadows are concerned, we used

the XSTAR correction to adjust for sun angle and differences in haze
level.

The details of the XSTAPcorrection algorithm are contained in a memo

from P. F. Lambeck of ERIM (11). They are presented here in a somewhat
condensed form. The first step is to calibrate the LANDSAT data to the

same type of data the algorithm was developed from. Our data came from

both LANDSAT's II and III while the algorithm came from LANDSAT II LACIE

segment data.

Let Xli - LANDSAT II digital count in band i

Let X2i - LANDSAT III digital count in band i
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Then,

where Al _

Also,

(1.275) (-1.445)1.141 -2.7121.098 and Bl - -2.950
.948 .446

(
1.1371)
l.} 725
1.2470 and B2 •
1.1260 (i)

angle is specified with each LANDSAT acquisition.
The Second step 1s to correct for d1fferences In Sun angle. The Sun

Let 8 - Solar zenith angle

Xi - digital COunt following step 1
cos 90 XcosS- i

Se t Xi - Xi
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Step 3 is to calculate the scene diagnostic signal value for each

acquisition.

Let Xijk - digital count following step 2 in band i, acquisition j
and pixel k

AThen, Xij ••
n

where n ~ number of pixels in ith band and jth acquisition.

Step 4 is to determine the amount of change in optical thickness (t)
1\from a reference haze condition. This is calculated by rotating the Xij

from step 3 and comparing the magnitude of the value in the "yellow stuff"

direction to the reference yellow value. As mentioned earlier, increasing

haze causes the yellow value to move in a negative direction. By compar-

tng the calculated yellow value to the reference yellow value, a change in

optical thickness ( ) from the reference thickness can be calculated.

Since the optical thickness is exponentially related to the atmospheric

transmittance fraction, a change in optical thickness of zero would pro-

duce a change in atmospheric transmittance of one. The change in atmos-

pheric transmittance is multiplicative so that a value of one would pro-

duce no change in the LANDSAT signal value. If. is negative, the calcu-

lated change in atmospheric transmittance is between zero and one and the

LANDSAT signal value is increased. In other words, if the haze level in

the LANDSAT data is less than the reference haze level as measured by the
relative magnitude of the yellow value, the LANDSAT signal values are

increased. The opposite is true if the haze level 1n the LANDSAT data is

greater than the reference haze level. This sort of a standardization of
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haze level is intended to decrease the effect of differential amounts of

haze over different LANDSAT acquisitions. The procedure used to calculate

r is as follows:

(
-.89952).42830Let Ri - .07592" 3rd column of rotation matrix
-.04080

(

1.2680 )
ex •• 1.0445
i .9142

.7734

* ( ~~:~ )Xi - 83.2
33.9

Y* •• -11. 2082

- values related to reference optical
thickness

••very hazy point in L~~SAT signal space
called point of all haze

••reference yellow value

A
Xij - scene diagnostic signal value from step 3.

-~then, ¥j" aj
(1-(1 -

where aj -

b -j

4
~ (/..2
i-I i

c -j
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The fifth and final step is to apply the XSTAR correction to the

LANDSAT digital counts following step 2.

Let Xij'" LANDSAT digital count following step 2 for ith band
and jth acquisition.

tj - change in optical thickness from step 4 for acquisition j.

~i and X! are as defined in step 4.

,
Then, Xi j ••.Exp (~i tj) (Xij - Xl) + xr

Se t Xi j •••Xij

The corrected LANDSAT data which were obtained by the above procedure

are larger than the corresponding uncorrected data. The correction just

for the differential haze levels in steps 3 through 5 generally increased

the raw digital counts but in one LANDSAT pass where haze was known to be

a problem, the correction caused a negative shift.

While the XSTAR haze correction algorithm is comparatively convenient

to use, the basis of the method is the magnitude of the calculated yellow

vector relative to a reference. The rotation matrix to transform the

LANDSAT signal values was obtained from an agricultural scene containing

many different crops and soil types. As mentioned earlier, the rotation

matrix did produce orthogonality among the transformed channels In the

particular data set in the Kauth paper. However, In our data set, only

two crops were involved and since all the imagery was obtained between

early August and early September, we generally expect to have full canopy

cover and green vegetation. This data space is therefore only a small
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subset of the data space used to obtain the rotation matrix. This raises

questions as to whether the rotation matrix in the XSTAR correction is

still applicable. We plotted the transformed bands against one another

and they did not appear to be orthogonal in most cases. However, since we
are only looking at a small portion of the possible range of LANDSAT

response, it is impossible to tell whether this is causing the appearance

of nonorthogonality in itself or whether the rotation matrix is incorrect.
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Appendix D - Alternative Regression Estimators

A further note should be added concerning the potential benefits of

using LANDSAT data. As pointed out earlier, the regression estimator con-

sidered in this report is biased to the extent of classification error.

An unbiased estimator would likely have higher relative efficiency because

the MSE would not be inflated by a squared bias term. One such unbiased
regression estimator is

A ,.= - ,., - - It.Preg = PDE + ,!'(~- !..* - E.)

Awhere the bias, D is as estimated in Appendix B. Evaluation of this re-

gression estimator remains for future research. Regression yield esti-
mates were not actually calculated in this report because the "wall to

wall" set of LANDSAT data classified to the crop of interest (~) has not

yet been obtained. This task also remains for future research contingent

upon the value of the results demonstrated thus far.

Another alternative unbiased regression estimator which avoids class i-

fication error completely is similar to the biased estimator except W is
-replaced by!. That is, rather than having a large sample consisting of

all LANDSAT data classified to the crop of interest, the large sample

would be just those fields within the JES segments known to be in the
crop. This is a considerably smaller "large" sample size than with W bu t

is still large relative to the small sample size consisting of OY fields.

While this regression estimator suffers no bias due to classification

error, it may have a different problem. In using a double sampling re-

gression estimation approach, we are assuming that the large sample is a
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random sample from the population and the small sample is a random subset

of the large sample. The biased regression estimator is alright in this

regard since the large sample is the whole population and the OY field can

be correctly considered a random sample from the population. However, in
the presently proposed ~nbiased regression estimator, the OY fields are
clustered within the JES segments. Strictly speaking then, the small sam-

ple is not a random subsample of the JES fields. This may not be a prob-

lem if it can be shown that the correlation among field-level LANDSAT

means within JES segments is not larger than the between segment

correlation. If the segments are considered as clusters of OY fields then

when the intracluster correlation is positive a one-way analysis of vari-

ance can be used to test for the presence of a clustering effect. If the

within sum of squares divided by the total sum of squares is smaller than

.5 then it would probably be safe to use the proposed regression

estimator. This analysis remains for future research.
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Appendix E - Fankings of Biased Regression Estimators
Table El - Biased-regression estimators for corn with field yields estimated from

8 plots per field, ranked by relative efficiency, ten estimators per
analysis district.

estimated estimated
analysis LANDSAT 2 relative relative
district variab1es.!/ R bias (%) VIF C.V. (%) MSEIF root-MSE(%) RE!/

1 (1) -(S,R,G) .19 0.04 1.003 2.2 1.003 2.2 LIS
(2) -R .11 0.18 1.001 2.2 1.007 2.2 1.1+.02
(3) -(2,3,F) .20 -0.67 1.026 2.2 1.127 2.3 -1.1
(4) -(2,R,G) .27 -1.40 1.059 2.2 1.520 2.6 0.85
(5) -(V,T) .23 -1.48 1.098 2.2 1.602 2.7 0.8+5.5
(6) -(T,R) .22 -1.85 1.148 2.3 1.915 3.0 0.6+0.7
(7) -(V,F) .20 -1.86 1.160 2.3 1 •932 3.0 0.6+0.75
(8) -(S,F) .29 -2.97 1.204 2.3 3.359 3.8 0.4-
(9) -(P,S,F) .29 -2.99 1.207 2.3 3.393 3.9 0.4

(10) -(S,D,R) .29 -2.99 1.207 2.3 3.393 3.9 0.4

3 (1) -(6,7) .41 0.5 1.005 4.9 1.015 5.0 1.6+(.35-.39)
(2) -(R,G) .40 0.5 1.002 5.0 1 .011 5.0 1.6+.21
(3) -(6,R) .37 -.05 1.002 5.2 1.002 5.2 1.5+.01
(4) -(6,P) .37 .02 1.002 5.1 1.002 5.2 1.5+.01
(5) -(V,G) .37 .17 1.001 5.1 1.002 5.2 1. S+.07
(6) -(D,G) .37 .28 1 .001 5.2 1.004 5.2 1.5+(.14-.16)
(7) -(T,G) .36 .28 1.001 5.2 1.004 5.2 1.4+.10
(8) -(6,V) .35 -.18 1 •001 5.3 1.003 5.3 1.4+.04
(9) -(6,T) .34 -.12 1.001 5.3 . 1.002 5.3 1.4+.03

(10) -(6,D) .34 -.20 1.001 5.3 1.003 5.3 1.4+.04

4 (1) -5 .J1 1.36 1.034 3.5 1.1848 5.1 0.9+.09
(2) -D .11 1.68 1.052 3.5 1.2833 5.3 0.9+.08
(3) -T .13 1.90 1.057 3.5 1.3578 5.4 0.8+.11
(4) -R .12 1.88 1.058 3.5 1 .3511 5.4 0.8+.08
(5) -v .12 1.93 1.058 3.5 1.3684 5.4 0.8+.08
(6) +7 .11 1.99 1.076 3.6 1.3969 5.6 0.8+.08
(7) -(6,7) .14 2.68 1.086 3.5 1.6975 6.0 0.7+(.26-.29)
(8) +p .13 2.66 1.104 3.5 1.6996 6.0 0.7+.08
(9) +5 .13 2.72 1.113 3.5 1.7305 6.1 0.7+.09

(10) +D .15 3.02 1.120 3.5 1.9044 6.3 0.6+.07

1/ See footnote, Table 8.
2/ See footnote, Table 8.
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Table E2 - Biased-regression estimators for soybeans with field yields estimated
from 8 plots per field, ranked by relative efficiency, ten estimators
per analysis district.

estimated estimated
analysis LANDSAT 2 relative re1a tive
district va riab1es.!/ R bias (X) VIF C.V.(X) MSEIF root-MSE(X) ~/

1 (1) -(4,5) .66 0.007 1.012 2.9 1.012 2.9 2.7+.04
(2) -(4,7) .65 -0.09 1 .012 2.9 1.013 3.0 2.7+.12
(3) -D .64 0.07 1.00002 3.0 1.0006 3.0 2.1'+.12
(4) -(5,7) .64 -0.1 1.015 3.0 1.017 3.0 2.5+.18
(5) -(5,5) .64 -0.1 1.015 3.0 1 •017 3.1 2.5+ .18
(6) -(7,5) .64 -0.1 1.015 3.0 1.017 3.1 2.5+(.62-.80)
(7) -P .62 0.42 1.0005 3.l 1.020 3.1 2.4+.54
(8, -(4,6) .63 -0.55 1.011 3.1 1.043 3.1 2.4+.65
(9) -R .63 0.66 1.001 3.1 1.048 3.1 2.4+.85

(10) -G .61 0.1 1.00006 3.1 1.002 3.2 2.3+.16

2 (1) -(6,G) .52 0.7 1.019 3.2 1.073 3.2 1.9+(1.4-1.7)
(2) -v .48 -0.1 1.0001 3.2 1.001 3.2 1.9+.05
(3) -4 .48 0.2 1.0002 3.3 1.004 3.3 1.9+.05
(4) -T .48 -0.2 1.0002 3.3 1.005 3.3 1.9+.05
(5) -(7,5) .47 -0.4 1.0006 3.3 1.015 3.3 1.8+.35
(6) -(P,D) .47 -0.4 1.0006 ~ ') 1.016 3.3 1.8+(.6-.7)_.J
(7) -(S,D) .47 -0.4 ].0006 3.3 1.016 3.3 1.8+.2
(8) -(P,S) .47 -0.4 1.0006 3.3 1.016 3.3 1.8+ •3
(9) -(7,D) .47 -0.4 1.0006 3.3 1.016 3.3 1.8+.4

(10) -(7,P) .47 -0.4 1.0006 3.3 1 .016 3.3 1.8+.9

3 (1) +4 .42 0.6 1.002 5.3 1.015 5.3 1.5+.11
(2) +(S,G) .40 0.6 1.010 5.4 1.023 5.4 1. 5+.21
(3) +(S,T) .38 -0.4 1.003 5.4 1.009 5.4 1.5+.10
(4) +(7, V) .38 0.07 1.005 5.4 1.005 5.4 1. 5+.02
(5) +(P,V) .38 0.09 1.005 5.5 1.005 5.5 1. 5+.04
(6) +(7,T) .40 -1.0 1.010 5.3 1.047 5.4 l.4+.5
(7) +(S,V) .37 0.05 1.005 5.5 1.005 5.5 1.4+.01
(8) +(7,5) .36 0.02 1.005 5.5 1.005 5.5 1.4+.02
(9) +(P,S) .36 0.02 1.005 5.5 1.005 5.5 1.4+.01

(10) +(7, P) .36 0.01 1.005 5.5 1.005 5.5 1.4+.01

1/ See footnote Table 8.

2/ See footnote Table 8.
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Appendix F - Prediction of Known Field Yield R2·s

From the two sets of regressions with dependent variables of field
yield estimated from two and eight plots per field, respectively, the R2

,.
which would result if field yields were known can be predicted.

Assume

Yij = yield of plot j 1n field i

= regression + Uij

and Uij - vi + eij

where Evi = Eeij = 0
2Cov(vivr) = <Iv if iar

and

Hence

- 0 if i "r
2Cov(e1jers) - (Ie if i-r, j-s

- 0 otherwise.

EUij - 0
and E(UijUrs) 2 2- (jv +tJe if i-r, j-s

,,2 if j#s- v i-r,

- 0 if i"r.
Then the following analysis of variance (AOV) tables result from

regressions with different sets of dependent variables:
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AOV for Field Yield Estimated from k Plots per Field

Source df E(MS)

Regression p (explained variation)/p

Residual n-p-l If ~ + "~/k

Total n-l

AOV for Known Field Yields

Source df E(MS)

Regression p (explained variation)/p

Residual n-p-l 62v
Total n-l

Thus

and E(MS(2) )resid

Hence

(4 E(MS(8) ) - E(MS(2) »/3resid resid

2and (n-p-l) £1 -v (4E(SS(8» (2) 1resid - E(SSresid» 3.

The R2 which would result if field yields were known is thus predicted
by

explained variation
explained variation + (n-p-l) (1~

SS(8) +reg

S5(8)
reg

(4 55(8)resid 55(2) )/3
re si d
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